
Figures 3-5 show the results of calculations of the amplitudes of perturbations of the 
i 

boundaries of a cylindrical layer. In all of the figures, curve 1 corresponds to Rnl, while 
2 curve 2 corresponds to Rnl. Line 3 describes the behavior of the radius of the internal 

cavity r l, p, = (i + kt.~) 2, s = 8, S I = S 2 = I0. Figure 3 shows the behavior of two-dimen- 
sional perturbations (23), (27) with % = i, 2, 3, while Fig. 4 shows the characteristic 
curves for radial perturbations (23), (28). Figure 5 illustrates the behavior of perturbations 
at the free surfaces of the layer with q = i, I = 0, i, 2, 3. The numerical curves that were 
constructed confirm the asymptotic results of the previous section - the internal surface is 
unstable during collapse, while the perturbations on the external surface die out. 
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EFFECT OF THE CHOICE OF CREEP INSTABILITY CRITERION ON THE SOLUTION OF 

THE PROBLEM OF OPTIMIZING ROD-SHAPED STRUCTURES 

M. N. Kirsanov UDC 539.376 

There are several approaches to evaluating the stability of a structure under creep 
conditions [i]. Uncertainty in the selection of a criterion of instability is an obstacle 
to the exact formulation of the problem of optimizing rheological systems. None of the exist- 
ing solutions [2, 3] combine the results of solution of the problem for different approaches~ 
Such a combination is lacking despite the fact that these approaches differ significantly in 
regard to their value for predicting the critical time. 

The goal of the present study is to evaluate the effect of the choice of instability 
criterion on the solution of the optimization problem. We will examine so-called conditional 
criteria [4]. We present the equations of the problem of the maximum of the critical time 
for an arbitrary rod-shaped structure, and we use a specific example to determine the con- 
dition of the minimum of volume for a fixed critical time. It is shown that the choice of 
criterion has no effect on the optimum form of the system in the first case and that the 
effect is negligible in the second case. 

We will assume that the material of the rod obeys the creep law [5] 

p;~ =/(~) (i) 

(p = e - o/E is the creep strain; ~ is the strain-hardening parameter). Analyzing variants 
of conditional instability criteria for creep, we note that for most of them the critical 
strain for a compressed rod can be represented in the form 

p = ~(Oo- -  o) /E,  (2) 
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where ~idepends on the chosen criterion (see Table i); o 0 = (~/~)2EI/F is the Eulerian criti- 
cal stress of the electric rod; I and F are the moment of inertia and the cross-sectional 
area. The rods in the structure are assumed to be hinged. The criterion in [6] is repre- 
sented approximately in the form (2) at stresses close to o0.* 

With the power law f = Ao n, the coefficient ~ is a constant which depends only on the 
properties of the material ($ee Table i). Ignoring the change in the geometry of the system 
over time, we will assume that for constant loads the stresses in the rods are also constant. 
Integrating (i) with power relation f(o), we obtain 

p = (At(o~ + 1)) v /n ,  ? = nl( l  + a). 

We introduce the dimensionless time parameter 

x = ( A t ( ~  + i )E" f f / " /% 

With allowance for the latter, Eqs. (2) and (3) give 

o - -  oo § xoVE 1-v = O. 

(3) 

(4) 

(5) 

We will express the stress in the rod with the number j (j = 1 ..... m) through the force Sj = 
ojFj. We rewrite Eq. (5) in the form 

Sj - -  (n/lj) 2 E j l  j + .DS~ (F~E~)I-~ = O. ( 6 )  

Let the geometry of the structure be unambiguously described by a certain set of para- 
meters. We combine them in the conditional vector Z. The lengths of the rods and the forces 
in them are known (from the static problem) functions ~j(~), Sj(Z). The remaining parameters 
in (6) are either unknown functions Z or constants (depending on the formulation of the prob- 
lem). By changing Z within the space of permissible values, we can determine Z when a certain 
characteristic of the system is optimal. 

For example, in the problem of minimizing the volume (weight) of a structure, it is 
necessary to find the extremum of the sum 

V ---- ~ V~, ( 7 )  
j = l  

where the volumes of the individual rods, expressed in terms of their lengths and cross-sec- 
tional areas, are determined from (6). In the general case, this equation is nonlinear and 
cannot be solved analytically. We will cite one special case. Let the moments of inertia 
Ij be independent of Z, i.e., be fixed for each rod. We exclude the unknown function Fj(Z) = 
Vj/~j from (6) and write 

We assume the critical time to be the same for all of the rods ~j = ~. Here, �9 is taken 
as a common factor from the sum (7). Thus, the condition of the minimum of V will be inde- 
pendent of its value and the coefficient ~. 

*The critical time under creep conditions was obtained in [7] without allowance for [6] and 
coincides with well-known results. 
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~ ,  deg ~ = 7 

Fig. 1 Fig. 2 

Consequently, in the general case the optimum geometry is independent of the choice of 
instability criterion. It is easy to show that this is also generally valid for the problem 
of the critical time maximum (for all rods of the structure) with a fixed system volume. In 
fact, Eq. (7) will be the equation of the curve of ~(Z), where the individual volumes Vj are 
determined (numerically or analytically) from (6). The coefficient ~ does not enter into 
this equation and thus aff_ects only the value of tcr (expressed from (4) in terms of; ~) and 
not the optimum geometry Z. 

Let us present an example of the solution of a problem involving the optimization of a 
simple structure. The problem is formulated on the basis of the minimum weight of the struc- 
ture. We will examine a system consisting of two rods (Fig. i). The geometry vector here is 
unidimensional Z = 6. We take the cross sections to be Square: F = b 2, I = b4/12. The dimen- 
sion b is an unknown function of the parameter ~. Excluding b from (6), we obtain 

S - -  E(nV/l~)~/i2 + ~5~(I/(VE)) ~-~ = O. ( 8 )  

We know the functions S(~) = 0.5Q/sinS, ~(~) = 0.5a/cos$. We introduce the variable x = 
tan B and we rewrite (8) in the form 

(xV)V-l( l  @ x2) 1-v -- KV~+lxV(I @ x2) -~-3/2 @ M = O. ( 9 )  

H e r e  K = 8n~E/(3a4Q); M =  T(Qa/(4E)) ~-1. The  c o n d i t i o n  o f  t h e  e x t r e m u m V  i s  t h e  e q u a l i t y  d V / d x  = 
0. We differentiate the last equation with allowance for this and obtain 

(~-- l ) ( i - -  ~ ) - -  KV~x(t ~ z-) -(~ x~(v + 3)) O. ( 1 0 )  

Together with (9), Eq. (i0) gives 

v ~-~ = M(x + t/x)~-~(~ - -  x~(~ + 3)) / (4z  ~ - -  i ) .  

When V > 0, it follows from the above that x lies within a fairly narrow range of possible 
values 0.5 < x < ~y/(~ + 3). The size of the interval is determined only by the material 
parameter y and is independent of both the acting loads and the chosen creep instability 
criterion. An exact value of x can be obtained from an equation which follows from (9) and 
(10) 

~ ( 7  - -  x~(7 ~ 3)) (l+v)h~-l) = (7 - -  1)(t - -  x2)(4x ~ - -  t)  2I<~-1) x(t  @ x~)-tl ~ ( 1 1 )  

( 0  = KM2/(~-I)). Figure 2 shows the solution (Ii) in relation to ~ for different y. The 
horizontal asymptote of all of the curves is the straight line $ = 26034 ' , which corresponds 
to the solution of the elastic problem and the case ~ = i. 

We calculated $ for a specific case to compare different instability criteria. Let 
= 2/3, n = 5 (u = 3), ~(~/a)2Q/E = 800. The corresponding values of ~ are shown in the 

last column of Table i. It is evident that the effect of the choice of criterion on ~ is 
negligible. 
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ASYMPTOTIC ANALYSIS OF PROBLEMS ON THE FREE VIBRATION OF RECTANGULAR 

TRANSVERSELY ISOTROPIC AND THREE-LAYER PLATES 

V. M. Kornev and A. O. Mul'kibaev UDC 539.3 

This article examines problems concerning the free vibration of transverse isotropic 
and three-layer rectangular plates (refined theory of bending accounting for shear through 
the thickness). The problems are described by a system of two equations, the first being of 
the order 2m (m = 2, 3 for transversely isotropic and three-layer plates, respectively) and 
the second a singularly perturbed second-order equation containing the small parameter e. 
For transversely isotropic plates, e characterizes the effect of transverse shears, while it 
characterizes the shear stiffness of the three-layer sandwich in the case of three-layer plates. 
We construct asymptotic expansions of the solutions with allowance for angular boundary- 
layer solutions, when the parameter ~ is small. In this case, the second equation is a per- 
turbation equation whose solution is in the nature of a boundary layer (edge effect). 

Different types of boundary conditions are examined for the initial systems. We study 
the relationship between the boundary conditions of the initial and truncated problems (with 
the perturbation equation omitted). Substantiation is provided for the transition from the 
boundary conditions in the refined formulation to the classical formulation in the neigh- 
borhood of points of inflection (i.e., for a piecewise-smooth contour). Use of the Kirch- 
hoff transform is validated for a free edge near a corner. Although a separation of variables 
is often possible for truncated problems, the complete system of equations does not permit 
such seParation. 

In the classical theory of the bending of plates, there is a contradiction between the 
overall order of the system of equations (two biharmonic equations for the normal deflection 
and the stream function) and five natural static boundary conditions. Thus, on the free 
edge, the bending and turning moments, the shearing force, and two forces in the plane of 
the plate are equal to zero. In the classical theory, four rather than five boundary condi- 
tions are established for the free edge if the Kirchhoff transform is used. There are theo- 
ries which are refinements of the classical theory and make use of more general hypotheses in 
deriving the equations (allowance for shear through the plate thickness). The contradiction 
between the overall order of the system and the natural static boundary ocnditions disappears 
in these theories. The form of the system which is simplest for analytical purposes is prob- 
ably that presented in [i, 2]. The order of this system is higher than in the classical 
theory due to the presence of a second-order equation having a solution of the edge-effect 
(boundary-layer) type. 

Researchers have developed a method of changing over from the boundary conditions of 
the refined theory to the boundary conditions of the classical theory [3-5] (an example 
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